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INTRODUCTION

Research continued on Pressure Pillowing of an Orthogonally Stiffened Cylindrical Shell.

The motivation for this project is the planned utilization of advanced composite materials in the

fuselage for large transport aircraft. In particular, the focus of this activity is the effect of cabin

pressurization on the stiffener-to-skin joint. The design of stiffener-to-skin joints is one of the

major technology issues in utilizing graphite/epoxy composites in the fuselage of a large transport

aircraft. The manner in which the loads are transferred in the stiffener-to-skin joints under inter-

nal pressurization is important for determining the load capacity of these joints.

The objective of this project is to develop analyses of an orthogonally stiffened composite

cylindrical shell subjected to internal pressure. These analyses are used to study the distribution

of the interacting loads between the shell and stiffeners, and to study the pillowing of the shell, for

a geometry and pressure typical of a large transport aircraft. Primarily the aim is to understand

the fundamental mechanics of the load transfer in the vicinity of the shell-ring-stringer joint. Sec-

ondly, these analyses can be used in parametric studies of joint response, and perhaps for design.

A potential benefit of such an analysis/design capability is to use fewer expensive fasteners in the

graphite/epoxy fuselage. Where fasteners are required in a graphite/epoxy structure, aluminium

fasteners cannot be used because of galvanic corrosion to the metal. More expensive fasteners,

like titanium, are required to avoid corrosion.

RESEARCH ACCOMPLISHED

A conference paper was presented, and an extended abstract of it appears in the conference

proceedings. The citation for the abstract and presentation are given below.

Johnson, E.R., and Rastogi, N., "Influence of an Asymmetric Ring on the Modeling of an

Orthogonally Stiffened Cylindrical Shell" Proceedings of International Conference on

Composites Engineering ICCE/1, David Hui, Editor, International Community for Com-

posites Engineering, August 1994, pp. 237 & 238.

Johnson, E.R. (speaker), and Rastogi, N., "Influence of an Asymmetric Ring on the Mod-

eling of an Orthogonally Stiffened Cylindrical Shell" International Conference on Com-

posites Engineering, Sheraton Hotel Downtown, New Orleans, Louisiana, August 28 - 31,

1994, Session 13f: Composite Structures 1.

Work continued on the effect of a ring, or frame, with an asymmetrical open cross section on

the response. Since the ring has an asymmetrical section, it twists and bends out-of-plane under

the internal pressure load in addition to bending in its plane and stretching along its circumfer-

ence. For the structural repeating unit shown in the Figure below, the asymmetrical section ring

results in loss of symmetry of the deformation about the 0-axis. (Symmetry about the x-axis is

preserved since the stringer cross section is assumed to be symmetric.)

The major new feature incorporated into the analysis was the warping deformation of the

ring's cross section due to torsion. This warping deformation is in addition to a previous exten-

sion of the model to include deformations due to transverse shear in the stiffeners and in the shell.
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Figure: Structural repeating unit of an orthogonally stiffened cylindrical
shell subjected to a internal pressure p.

Inclusion of warping was found to significantly change the torsion and out-of-plane bending

response of the ring, and to change the distributions and magnitudes of the interacting line loads
between the stiffeners and the shell. For example, the direction of the rotation about the circum-

ferential axis of each of the structural elements at the shell-ring-stringer joint was change by the

inclusion of this warping deformation. Also, the circumferential component of the moment

resultant at the joint due to these interacting load intensities was increased by the inclusion of

warping deformation. These results are detailed in the Appendix of this report.
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APPENDIX

Analysis of an Internally Pressurized Orthogonally Stiffened Cylindrical Shell

with an Asymmetrical Section Ring



ANALYSIS OF AN INTERNALLY PRESSURIZED ORTHOGONALLY STIFFENED

CYLINDRICAL SHELL WITH AN ASYMMETRICAL SECTION RING

Naveen Rastogi* and Eric R. Johnsoni

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

ABSTRACT

The linear elastic response is determined for an internally pressurized, long

circular cylindrical shell stiffened on the inside by a regular arrangement of identical

stringers and identical rings. Periodicity of this configuration permits the analysis of

a portion of the shell wall centered over a generic stringer-ring joint; i.e., a unit cell

model. The stiffeners are modeled as discrete beams, and the stringer is assumed to

have a symmetrical cross section and the ring an asymmetrical section. Asymmetry

causes out-of-plane bending and torsion of the ring. Displacements are assumed as

truncated double Fourier series plus simple terms in the axial coordinate to account

for the closed end pressure vessel effect (a non-periodic effect). The interacting line

loads between the stiffeners and the inside shell wall are Lagrange multipliers in the

formulation, and they axe also assumed as truncated Fourier series. Displacement

continuity constraints between the stiffeners and shell along the contact lines are

satisfied point-wise. Equilibrium is imposed by the principle of virtual work. A

composite material crown panel from the fuselage of a large transport aircraft is the

numerical example. The distributions of the interacting line loads, and the out-of-

plane bending moment and torque in the ring, are strongly dependent on modeling

the deformations due to transverse shear and cross-sectional warping of the ring in

torsion.

* Graduate Research Assistant, Aerospace and Ocean Engineering

Professor of Aerospace and Ocean Engineering



INTRODUCTION

The design of stiffener-to-skin joints is one of the major technology issuesin

utilizing graphite-epoxy composites in the fuselageof a large transport aircraft

(Jackson, et al., 1984). Stiffeners can be attached to the skin by either fasten-

ers, co-curing, adhesivebonding, or somecombination of these methods. Where

fasteners are required in a graphite-epoxy structure, aluminium fasteners cannot

be used because of galvanic corrosion to the metal. More expensive fasteners, like

titanium, are required to avoid corrosion. Hence to reduce manufacturing costs,

mechanical fasteners can be eliminated in favor of bonded joints. As an example, a

graphite-epoxy crown panel for the fuselage of a large transport aircraft was recently

fabricated without fasteners by co-curing the stringers and co-bonding the rings, or

frames, to the skin (Ilcewicz, et al., 1992; Swanson, et al., 1992). Also, the curved

graphite-epoxy fuselage frames were manufactured by resin transfer molding into

two-dimensional braided preforms of net structural shape (Jackson, 1994). Clearly,

the strength of the bond line is a critical issue for these primary fuselage structures

made from advanced composite materials. The purpose of this paper is to ana-

lyze the load transfer in bonded stiffener-to-skin joints under cabin pressurization.

Internal pressure is an important load to consider because it tends to cause peel

stresses in the bond line which are particularly debilitating in adhesive joints.

An idealized structural model of the fuselage is analyzed. This configuration

is a long circular cylindrical shell stiffened on the inside by a regular arrangement

of identical stringers and identical rings (frames). Periodicity of this configuration

permits the analysis of a portion of the shell wall centered over a generic stringer-

ring joint; i.e., deformation of a structural unit cell determines the deformation of

the entire shell. The stringer is assumed to have a symmetrical cross section , and

the frame is assumed to have an asymmetrical open section. Asymmetrical open

section frames are commonly used as transverse stiffeners in the fuselage structure.

The stiffeners are modeled as discrete beams perfectly bonded to the inside shell

wall, so that the interacting loads between the stiffeners and shell wall are line
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load intensities. These line load intensities represent resultants of the tractions

integrated across the width of the attachment flanges of the stiffeners.

Mathematical formulations for the linear elastic response presented in this paper

include the effect of transverse shear deformations and the effect of warping of

the ring's cross section due to torsion. These effects are important when the ring

has an asymmetrical cross section, because the loss of symmetry in the problem

results in torsion of the ring, as well as out-of-plane bending, and a concomitant

rotation of the joint at the stiffener intersection about the circumferential axis.

This stringer-ring-shell joint is modeled in an idealized manner; the stiffeners are

mathematically permitted to pass through one another without contact, but do

interact indirectly through their mutual contact with the shell at the joint. Restraint

of cross-sectional warping, as occurs here in the ring due to contact with the shell,

is an important contributor to the normal stresses in thin-walled open section bars,

as was demonstrated by Hoff (1945). Based on transverse shear deformation and

cross-sectional warping of the ring, four structural models can be defined. The

simplest model uses non-transverse-shear-deformable theory, or classical theory, and

neglects warping due to torsion. The most complex model includes both effects.

Intermediate complexity models occurs for inclusion of one effect without the other.

For symmetric section stiffeners, the response of the unit cell is symmetric about

the stringer axis and the ring axis, and there is no rotation of stringer-ring-shell joint.

Results have been published for the linear response (Wang and Hsu, 1985) and for

the geometrically nonlinear response (Johnson and Rastogi, 1994) of a symmetric

configuration subjected to internal pressure.

MATHEMATICAL MODEL

An idealized mathematical model is assumed for the semi-monocoque fuselage

to study the generic characteristics of the response in the vicinity of the stiffeners'

intersection. The model is of a very long circular cylindrical shell internally stiffened

by identical stringers equally spaced around the circumference, and identical frames



or rings, equally spacedalong the length. In general, the spacingof the stringers is

not the sameasthat of the rings. The structure is periodic both longitudinally and

circumferentially, and the loading is spatially uniform. Consequently,a structural

repeating unit (or unit cell) canbedefinedwhosedeformation determinesthe defor-

mation of the entire structure. A typical repeating unit consistsof a portion of the

shell wall centeredoverportions of stringer and ring asshownin Fig. 1. The radius

of the middle surfaceof the undeformedcylindrical shell is denotedby R, and the

thickness of the shell is denoted by t. Axial coordinate x and the circumferential

angle 0 are lines of curvature on the middle surface, and the thickness coordinate

is denoted by z, with -t/2 <_ z <_ t/2. The origin of the surface coordinates is

centered over the stiffeners intersection so that -l _ x _< l and -O _< 0 _< O, where

21 is the axial length, and 2RO is the circumferential arc length of the repeating

unit.

The stiffeners are mathematically modeled as one-dimensional elements, or dis-

crete beams, so that the actions transmitted by the stiffeners to the inside of the

shell wall are represented by distributed line load intensities. In this paper it is as-

sumed that the stringer is symmetric about the x-z plane through its centroidal axis

and the ring is asymmetric. On the basis of the symmetry about the x-axis for the

unit, only the interacting line load components tangent and normal to the stringer

are included in the analyses. The shell-stringer interacting force components per

unit length along the contact lines are denoted by A_s(z) for the component tangent

to the stringer, and _zs(x) for the component normal to the stringer. However, due

to an asymmetrical cross section ring, the components of line loads between shell

and the ring consist of three force intensities and two moment intensities. The three

shell-ring interacting force components per unit length along the contact lines are

denoted by Axr(0) for the component acting in the axial direction, A0r(0) for the

component tangent to the ring, and )%r(0) for the component normal to the ring.

The two shell-ring interacting moment components per unit length along the con-

tact lines are denoted by Aor(O) for the component tangent to the ring and Az_(O)
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for the component normal to the ring. These interacting loads acting in a positive

sense on the inside surface of the shell are shown in Fig. 2. The purpose of the

analysis is to determine these distributed line load intensities and also, to examine

the differences in their magnitudes and distributions for the four structural models

described earlier.

For all the structural models, the linear elastic response of the repeating unit to

internal pressure is obtained by utilizing Ritz method and the principle of virtual

work applied separately to the shell, stringer, and ring. The virtual work functionals

are augmented by Lagrange multipliers to enforce kinematic constraints between the

structural components of the repeating unit. The Lagrange multipliers represent

the interacting line loads between the stiffeners and the shell. Displacements are

separately assumed for the shell, stringer, and the ring.

TRANSVERSE SHEAR DEFORMATION FORMULATIONS

Shell

A consistent first order transverse shear deformation theory is developed to

model the shell. Based on the assumption that the shell thickness t is relatively

small and hence, does not change during loading, the displacements at an arbitrary

material point in the shell are approximated by

u(x,O,z) = .(z, 0) + zCx(x,0) (1)

v(x,O,z) = v(x,O) + z¢o(x,o) (2)

w(x,O,z) = w(x,0) (3)

where u(x,O), v(x,O) and w(x,O) are the displacements of the points of the ref-

erence surface, and Cx(x, 0) and ¢o(x,O) are the rotations of the normal to the

reference surface as shown in Fig. 3(a). Using Eqs. (1) to (3) and assuming small

displacement gradients, the three-dimensional engineering strains are

cO0 + zt¢o0

exx = exz+z_;,, e00 -- (1+_) ez: = 0 (4)



_ ~2

_o = (1 + _) (5)

70z
e_z = 7xz eoz - (6)

(1+_)

The transverse shear strains e.: and e0, represent average transverse shearing

strains through the_thickness of the shell since these strains contain derivatives

of the displacements in z, and Eqs. (1) to (3) are approximate in the z-coordinate.

In Eqs. (4) to (6), the two-dimensional, or shell, strain measures, which are inde-

pendent of the z-coordinate, are defined by

Ou OCx
_x_=_ _ = -_-z (7)

£00 --
10v w 1 0¢o

R 00 + _ _00- R 00 (S)

Ov 10u

_,_o= _ + _ N (9)

0¢o 1 0¢,: 10v

kx0 = -_x + R O----0-'+ R O--_- (10)

0¢0 10Cx 10v

_xo - Ox R O0 R Ox (11)

C_w

_: = ¢_ + o-2
v 10w

Vo: = ¢o - _ + _ O--O (12)

If we set the (average) transverse shear strains in Eq.

rotations of the normal are

(6) to zero, then the

Ow

¢_ - Ox (13)

v 10w

¢o = R R O0 (14)

so that

2 02w 2 Ov

_0 = _x0 - R 0z00 + R 0--_ _0 = 0 (]5)

Hence, the thickness distribution of the shear strain reduces to

"rx0+ z(1+ @),_o (i6:)
_0 = (1+_)



which coincides with the results of Novozhilov's (1964) classical shell theory.

It is evident from Eq. (5) that three shell strain measures are needed to rep-

resent the shear strain distribution through the thickness in the transverse shear

deformation shell theory. Whereas, only two shell strain measures are required in

classical shell theory to represent the shearing strain distribution through the thick-

ness (refer to Eq. (16)). Also it can be shown that under rigid body rotation of the

shell, the nine shell strain measures, given by Eqs. (7) through (12) vanish. (For

Novozhilov's classical shell theory, six shell strain measures given by Eqs. (7-9) and

(15) vanish under rigid body rotations).

The physical stress resultants and stress couples for the shell in terms of stress

components are given, in the usual way, by

(Nxx, Mx.)

(Noo, Moo)

(N_o, M_o)

(No_, Mo_)

Qx

Qo

A generalized 9 x 1 stress vector for

ff Z= (1, z)azx(l+ _) dz

=ft(1, z)aoo dz

S= + ) dz

=ft(1, z)aox dz

S=  ,z(l+5)ez

:_ozdz

the shell is defined by

(17)

_rshell = [Nxx, Noo, No_, M_x, Moo,-fifo, 2VI_o, Q_, Qo] T (18)

in which 217/_0 and 217/_0are the mathematical quantities conjugate to the modified

twisting measures _x0 and _0, respectively, and are defined in terms of the physical

stress couples by

1 M 1 M
M_o = _( _o + Mo.) Mxo = -6( _o - Mo_) (19)
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The nine elementsof the stressvector in Eq. (18) and the relations of Eq. (19)

determine all the stressresultants and stress coupleslisted in Eq. (17) except for

shear resultant Nxo. The shear stress resultant Nx0 is determined from moment

equilibrium about the normal for an element of the shell. This so-called sixth

equilibrium equation is

Mox

Nxo= No,,+ ---f-- (20)

The generalized strain vector for the shell is

gsheU = [exz, CO0,7zO, _xx, _;00, RxO, kxO, 7xz, 70z] r (21)

This strain vector is conjugate to the stress vector in the sense that the internal

virtual work for the shell is given by

p/,

_u,i.t H -rr (22)r "shell = _%hell Gshell dS
JJs

where S denotes the area of the reference surface and dS = dxRdO. This expression

for the internal virtual work can be derived from three-dimensional elasticity theory

by using Eqs. (4) to (6) for the thickness distributions of the strains and the

definitions of the resultants given by Eqs. (17) and (19).

Consistent with the transverse shear deformation theory, the linear elastic con-

stitutive law for a laminated composite shell wall is given by

NX X '

Noo

Nox

Mxx

M__oo
M,,o
Mxo .

"All A12 A16 Bll B12 B_6 B126

A12 A22 A26 B12 B22 B16 B_

A16 A26 A66 B61 B62 B_6 B_8

Bll B12 B61 Dll 912 D16 D_6

B12 B22 B62 D12 D22 D16 D_6

B_, B_ B_o DI_ Dlo D11 Da_
_B12, B_6 B_6 D_ D_6 D_ D_

F--XX

_00

_/_0

NO0

_xO

['_xO ,

(23)

and

{QxQo}= [ A4aA45 (24)



in which stiffnessesAij, Bij and Dij are given in Appendix. The transverse shear

stiffnesses, A44, A4s, and Ass can be calculated by two different methods. The first

method is based on the assumption of constant transverse shear strain distribu-

tion through the thickness, and the second method is based on the assumption of

constant transverse _hear stress distribution through the thickness. In the present

analysis, we have used the first method to compute the transverse shear stiffnesses.

The statement of virtual work is

• Vshel I = -, . p "Jr- (25)

where the external virtual work for a cylindrical shell under constant internal pres-

sure, including an axial load due to the closed-end effect, is written as

_vext iL..p = p 5w doe

0

+ p --_-dO [Su(l,O)-Su(-l,O)] (26)

-0

and the external (or augmented) virtual work due to the interacting loads is

l

i
-l

O

+ i { 7_¢x(0,0)]+ _0r(0)[_v(0,0)- 7_¢0(0,0)]
-O

+ a:,(0)_w(0,0)- A0,(0)_(-_-_ ,=o) + A:,(0)_(0_lx=0

t O¢o 2)dO Q[Su(/, O) 5u(-/, 0)]20x x=o)} (R- - -

(27)

The axial force Q in Eq. (27) is an additional Lagrange multiplier that accounts

for axial load sharing between the stringer and shell.
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Stringer

Stringer displacements us(x) and w_(x), and the rotation of the normal _e_(x)

are shown in Fig. 3(b). Based on transverse shear deformation theory, the virtual

work expression for the stringer is

l

-l

+ Mo_5ao_ + Vz_57zs]dx = -

l

-l

+ dx + -
(28)

in which Nxs is the axial force in the stringer, Mos is the bending moment, Vz_ is

the transverse shear force, ex_ is the normal strain of the centroidal line, the product

zno_ is the portion of the axial normal strain due to bending, 7z, is the transverse

shear strain, and e_ is the radial distance from the stringer centroid to the contact

line along the shell inside surface. The strain-displacement relations and Hooke's

law for the stringer are

t = ¢1e_ = u 8 a0_ 0_ %_ = ¢0_ + w'_ (29)

N,_ = (EA)se,_ Me_ = (EI)_t¢o_ I_ = (GA)_%_ (30)

in which the prime denotes an ordinary derivative with respect to z.

Ring

Ring displacements are denoted ur(0), vr(0), and w_(0), and the rotations are

denoted by ¢_(0), ¢0_(0), and ¢z_(0) as shown in Fig. 3(c). The structural model is

based on transverse shear deformation theory and includes cross-sectional warping

due to torsion. The extension of classical thin-walled, open section curved bar

theory to laminated composite materials was developed by Woodson, Johnson, and

Haftka (1993). However, Woodson et al. (1993) did not consider transverse shear

deformations.

10



The statement of virtual work is

O

[NerVier+ M.r,_,_xr+ M,r,5,_zr+ T,,-,_-r+ M,.,r,_(÷,./no)+ _,-'_7_,.+ _%r*7_r]*
-0

®

- J {__(_)[_r(0)+ _r,_o_(0)]+ Aor(e)[*_r(6)+ _**.(0)- _0,_(0)]Rod8

-0

+ Az,-(Ol,_,r(O)+ Aor(0)_*o_(0)+ A.r(e)[*¢z_(e)- _l*_r(0)]} (_+ _) n0 _0
(3_)

in which Nor is the circumferential force, M_ is the in-plane bending moment,

-_1zr is the out-of-plane bending moment, ._I,_ is the circumferential bimoment, Tsr

is the St. Venant torque, V_r is transverse shear force in the x-direction, Vzr is

transverse shear force in the z-direction, e0r is the circumferential normal strain of

the centroidal arc, _ is the in-plane bending rotation gradient, _ is the out-of-

plane bending rotation gradient, T_ is the twist rate, 7xr is transverse shear strain

in 0-z plane, 7z,- is transverse shear strain in x-z plane, er is the distance from the

ring reference arc to the contact line along the shell inside surface, and R0 is the

radius of ring reference arc. Parameters w0 and wl are the constant coefficients in

the contour warping function, w(x) = wo + xwl, for the attachment flange of the

ring. The rotations and strain-displacement relations are

1 1 (32)_ = (¢0r + ¢.) 7_r = ¢. -- Ro(_r - _r) _. = *. + n0_

in which ¢_ is the rotation around x-axis, ¢0_ is the rotation around 0-axis, ¢_r

is the rotation around z-axis, and the over-dot denotes an ordinary derivative with

respect to _. It is assumed that the shear forces are decoupled from extension,

bending, and torsional deformations of the ring. Thus, the material law for the ring

11



is

' Nor

Mzr

Mzr

Mwr

Tsr

EA

ES_

-ES_

= -ES_

EH

0

0

ES_ -ESz -ES_ EH 0 0

EI_ -EI_ -EI_ EH_ 0 0

-EIz_ EI_ EI_ -EH8 0 0

-EI_. EI_ EI_ -EHq 0 0

EH_ -EH_ -EHq GJ 0 0

0 0 0 0 GA_e GA_

0 0 0 0 GA_:z GA_o

68r

l_zr

l_ Zr

G/Ro
rr

_/xr

_/zr

(33)

The stiffness in the first five rows and columns of this matrix were evaluated from

a computer code developed by Woodson, Johnson, and Haftka (1993).

For structural models in which the effect of warping of the ring cross section is

excluded the contribution of the bimoment, M_, to the ring virtual work in Eq.

(31) is neglected. The fourth row and column of the stiffness matrix, Eq. (33), are

ignored. Also, the contour warping function w(x) is taken as zero.

CLASSICAL FORMULATIONS

Shell

The shell is modeled with Sanders' (1959) theory for thin shells. Define a gen-

eralized strain vector in terms of the shell strain measures by

_shell = [_zz, 680, 7xO, _xx, I_O0, _xO] T (34)

The first five strain measures of the shell reference surface in Eq. (31) are related

to the displacements by Eqs. (7-9), and the sixth strain measure, nx0, is given by

060 1 0¢x Ro-T+ o--g-+ (35)

where the rotation about the normal, Cz, is

10v 10u

¢z = -_( Ox R -_) (36)

and the rotations ¢, and ¢0 of the normal are given by Eqs. (13) and (14).

12



Define a generalizedstressvector in terms of the stressresultants and couples

of Sanders' theory by

_shell=" [N,x, Noo, N_o, Mxx, Moo, MSo] T (137)

such that the internal virtual work is given by Eq. (22). Quantities N_o and M_o are

the modified shear resultant and twisting moment resultant in the Sanders theory.

Hooke's law for a laminated composite shell wall is

_shetl = H_shelt H = BT D (38)

in which the 3 x 3 sub-matrices A, B and D are given by classical lamination theory

(Jones, 1975). The external virtual work expressions for the classical shell theory

are still given by Eqs. (26) and (27), but the rotations in Eqs. (27) are given by

Eqs. (13) and (14).

Stringer

The stringer is modeled with Euler-Bernoulli beam theory thereby neglecting

the transverse shear strain. Hence, equating 7zs in Eq. (29) to zero results in the

following expression for ¢0s.

¢0, = -w'_ (39)

It may be noted that neglecting the transverse shear strain would also modify the

virtual work statement given by Eq. (28), and the third equation in the Hooke's

law, Eq. (30), is neglected.

Ring

For classical formulations, the ring is modeled with Euler-Bernoulli beam theory

thereby neglecting the transverse shear strains. Hence, equating "_xr and "_zr in Eq.

(32) to zero results in the following expressions for the rotations ¢_ and ¢_.

1 1

¢" = - wr) Czr - (40)

13



It may be noted that neglectingthe transverseshearstrains would also modify the

virtual work statement given by Eq. (31), and the fifth and sixth equations in the

Hooke's law, Eq. (33), are neglected.

DISPLACEMENT CONTINUITY

In order to maintain continuous deformation between the inside surfaceof the

shelland stiffenersalongtheir linesof contact, the following displacementcontinuity

constraints are imposed:

Along the shell - stringer interface (i.e., -l _<x _< l, 0 = 0),

t

g_s = u(x,0) - _¢_(x,0)- [us(x) + es¢0s(x)] = 0 (41)

gzs = w(x,o)- ws(_) = o (42)

Along the shell - ring interface (i.e., x = O, -0 _< 0 < 0),

g_r= _(o,0)- t
_¢_(0,0) - [ur(O) + er¢o_(O)] = 0 (43)

gor=v(O,O)-_¢o(o,o)-[v_(O)+_¢.(o)-_oTr(o)] =0 (44)

g. = w(O,O)- w_(o)= 0 (45)

Ow
Got - Ox x=o - ¢o_(0) = 0 (46)

Ov t 0¢o[ • =o] - [¢z_(0)- wlr_(0)] = 0 (47)G_r L0--_z_=o 20z

The variational form of these constraints are

O

f
-0

l

/ + azsg s]dx = o
-l

(48)

14
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The constraint that the elongationof the shell at 0 = 0 and the elongation of the

stringer are the same is

[u(l,o) - u(-l,o)] - - = o (50)

DISPLACEMENTS, ROTATIONS, AND INTERACTING

LOAD APPROXIMATIONS

The periodic portions of the displacements and rotations are represented by

truncated Fourier Series having fundamental periods in the stringer and ring spac-

ing. The non-periodic portions of the displacements due to axial stretching are

represented by simple terms in x. The Fourier series reflect symmetry about the

x-axis for the repeating unit. For the shell, displacements of the middle surface (see

Fig. 3a) are represented as

M N M N

2l
m----1 n----0 m----1 n----1

(51)
M N M N

V(X,O) = E E ylmncOS(OLmx)sirt(_nO)nt- E E V2m,_Sirt(amxlSin(3nO) (52)
m=0 n=l m=l n----1

M N M N

W(X,O) = E E WlmnC°8(°tmx)C°8(/_nO) "_ E EW2mnSirt(O_mX)Cos(/_nO)

m=O n=O m=l n=l

(53)
and rotations of the normal are

M N M N

Cx(X'O)---- E E CxlmnSin(°_mx)C°s(_nO) -_- E E +x2mnC°N(°_mx)C°s(]_nO)

m=l n=0 m=l n=l

(54)
M N M N

+O(X'O) = E E +01mnC°'s(°lmX)Sirt(]_nO)-t- E E +02rnnSirt(OlrnX)Sirt(/_nO)

m=0 n----1 m=l n----1

(55)

= m__._and _n n_ where m and n are non-negative integers. Notein which OZm l = "O"

that some terms in the truncated Fourier Series of Eqs. (51-55) have been omitted.
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The coefficients of the omitted terms are u200, u2mo, u20n, w2mo, _bx200, q_x2rn0, and

¢,20n, in which m = 1,2, ..., M and n = 1,2, ..., N. The rationale for their omission

is discussed in the following sub-section. The displacements of the centroidal line

of stringer (see Fig. 3b) are

M M
" qlx

Us(X) = _.l + Z UslrnSin(CtmX) + Z Us2rnCOS(_mX)

m=l m=l

(56)

M M

Ws(X) -_" E WslmSin(OtrnX) _- Z Ws2mC°8(C_mX)

m=l rn=l

and the rotation of the normal of the stringer about the 0-axis is

(57)

M M

COs(X)-= Z ¢OslrnSin(olrnX)+ E ¢°s2rnC°8(°lmZ)

m-=l rn=l

(5s)

where the coeffcients u_20 , ws20 and ¢0s20 are omitted. Coefficient q0 in the axial

displacement field of the shell and ql in the axial displacement field of the stringer

represent elongations of each respective element caused by either an axial mechanical

load or due to close-end pressure vessel effects. The displacements of the reference

circle of the ring (see Fig. 3c) are

N

ur(o)= Z ur.Co (Z.o)
n----1

(59)

and rotations are

N

v,.(O) = E v,.,,Sin(_nO)
n=l

(60)

N

w (O)= w .Co4B.o) (61)
n--_-0

N

Cx_(0) = E ¢x,_Sin(13nO) (62)
n=l

N

n=l

(63)
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N

¢zr(O) = E ¢zr.Sin(SnO) (64)
n=l

where the coeffcients u_0 and ¢0_0 are omitted. The distributions of the interacting

loads, or Lagrange multipliers, are taken as

M M

/_zs(x) = E AzslmSin(CtrnX) + E _zs2mCos(_rnX)
rn=l m---1

(65)

M M

_zs(x)---F_.a.lmSi_(.mx) + _ a.2mCo4.mx)
ra=l rn=l

N

:_xr(o)= }2 :_x_nCo_(a.o)
n---1

(66)

(67)

N

A0_(0) = E Aor,_Sin(/gnO) (68)
n=l

N

_(o) = _ az_.Co_(_.o)
n----O

N

Aor(O) = _ Ao,.,Cos(a.O)
n=l

(69)

(70)

N

Azr(O) = E A_.Sin(a.O) (71)
n----1

where the coefficients Ax2_0, A,280, Ix_0, and Ao,-o are omitted.

Terms Omitted in the Fourier Series

Terms omitted in the truncated Fourier Series for the displacements, rotations,

and the interacting loads were determined from rigid body equilibrium conditions

for the ring and stringer, and from displacement continuity conditions between the

shell and the stiffeners. The external virtual work for the stringer and ring must

vanish for any possible rigid body motions of these elements. For the stringer these

rigid body motions are spatially uniform x-direction and z-direction displacements.

(A rigid body rotation of the stringer in the x-z plane is not considered since this
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motion would violate longitudinal periodicity of the repeating units.) Vanishing of

the external virtual work for an arbitrary rigid body displacement of the stringer

in the axial direction leads to the x-direction equilibrium equation

l

-1

dx =0 (72)

Similarly, the equilibrium equation for a rigid body displacement of the stringer in

the z-direction is
l

-l

dx =0 (73)

If the ring is considered in its entirety, that is, as made up of an integer number

of repeating units around its circumference, the rigid body motions that lead to non-

trivial equilibrium conditions are a displacement in the x-direction and a rotation

about an axis through the centeroid of the ring parallel to the x-direction. The

z-direction equilibrium equation is

O

/
-O

,x,,_(o)(Ro+ _) dO= o (74)

and the moment equilibrium equation about the x-axis is

O

f ao_(o)(Ro
-0

+ _)2 dO= 0 (75)

Equilibrium Eqs. (72) to (74) imply that coefficients

A._20 = 0 Az_20 = 0 A._0 = 0 (76)

in the Fourier Series for the interacting loads, and these conditions have been taken

into account in Eqs. (65) to (67). The sine series for A0,- given in Eq. (68) satisfies

the equilibrium condition given in Eq. (75).
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Consider the variational form of the constraints, Eqs. (48) and (49), for the

spatially uniform components of the virtual interacting loads. These equations are

N

u200 t t- 8¢._oo + E(u2on - 5¢.2on) -(Us2o + e_+os2o)]_A._2o = 0 (77)
n=l

N

[ E WlOn -- Ws20] ¢_zs2° : 0 (78)
n=0

M
t t

e_¢0_0)/_A,,-0 = 0 (79)[U200 -- _ _x200 "_- E (U2mO -- "_ ¢x2rnO ) -- (?2rO -_

rn=l

Since these equations are satisfied on the basis that _A,_20 -- 0, (_Azs20 = 0 and

(_A,_0 = 0, consistent with Eq. (76), the bracketed terms in Eqs. (77) to (79) do not

necessarily vanish. The implication that these bracketed terms in Eqs. (77) to (79)

do not vanish is that displacement continuity conditions are not satisfied pointwise.

Pointwise continuity can be achieved by taking each Fourier coefficient appearing

in the bracketed terms of Eqs. (77) to (79) to be individually zero. Fourier Series

given in Eqs. (51), (54), (56), (58), (59), and (63) reflect this choice. Moreover,

Fourier coefficients u200, u,20, and ur0 represent rigid body displacement in the axial

direction for the shell, stringer, and ring, respectively, and setting them to zero can

be justified on the basis that rigid body displacement does not contribute to the

deformation of the structural elements. Since Fourier coefficient w,20 represents

rigid body displacement of the stringer in the z-direction, it would seem that it

should be set to zero as well. However, to maintain continuity between the stringer

and the shell in the z-direction, we impose the condition

N

(80)E Wlo n -- Ws20 = 0

n=O

to determine w_20 after obtaining the solution for the displacement components

that deform the shell; i.e., Fourier coefficients Wl0n, n = 1, ..., N, are taken to be

non-zero independent degrees of freedom since the stringer coefficient w_20 is not a

part of the solution vector.
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Finally, consider the constraint equation associated with 5Ao,-o, the spatially

uniform component of the interacting moment intensity, which was omitted in the

series given by Eq. (70). Derived from Eq. (49), this constraint equation is

M

rn=l

We equated the constant component of the twist, ¢0r0, to zero from the consider-

ations associated with Eq. (79). Consequently, a non-zero value of the constant

component of the interacting moment intensity, Aoro 5/= O, would not contribute

to the equilibrium of the ring, since Ao,-o and ¢0_0 are conjugate variables in the

external work for the ring (refer to Eq. (31)). Since ¢0,-0 = 0, it is necessary that

Ao_o = 0 to achieve consistent conditions for the torsional and out-of-plane bending

equilibrium of the ring. With 5Ao,-o = 0 in Eq. (81), the bracketed term does not

necessarily vanish, and as a result pointwise rotational continuity betwen the shell

and the ring is not assured. Pointwise rotational continuity is achieved if we take

the coefficients W2mO = O, m = 1, ..., M, as was done in the Fourier Series for the

normal displacement of the shell given by Eq. (53).

DISCRETE EQUATIONS AND THEIR SOLUTION

Transverse Shear Deformation Model

The discrete displacement vector for the shell is the (10MN + 3M + 3N + 2) x 1

vector

a h., = [a0LalL..,aS] (82)

in which subvectors are

_-_m

U0 ---- [q0,w100,V101,W101,¢0101,'",V10N,W10N,¢010N]T (83)

[Ulm0, WlmO, Cxlm0, Ulml, U2ml, Vim1, V2ml, Wlml, W2ml, ¢xlml, Cx2ml,

¢Olml, (fiO2ml,..., UlrnN, U2rnN, VlmN, V2mN, WlmN, W2mN, (fixlrnN, (84)

_)z2rnN, _901rnN, ¢02mN] r
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where rn = 1,...,M

The (6M + 1) x 1 discrete displacement vector for the stringer and (6N + 1) > 1

vector for the ring are

ttstr = [ql, Usll, Us21, Wsll, Ws21, ¢Osll, ¢Os21, ..., ttslM, tts2M,

(I)slM, Ws2M, ¢OslM, (_Os2M] T (85)

^

ttring -_ [Wro,fir1,Wrl,Wrl,_Orl,(_xrl,_zrl,-.., UrN,VrN,WrN,_OrN,_)xrN,_)zrN]T

(86)

in which the term Ws0 for the stringer has been omitted as discussed in reference

to Eq. (80). The 4M x 1 discrete interacting loads vector for the shell-stringer

interface and (5N + 1) x 1 vector for the shell-ring interface are

_s,r r_. [/_xsll,/_xs21,)_zsll,)kzs21,...,/_xslM,/_xs2M,)kzslM,_zs2M] T (87)

_ring = [AzrO,_xr,,_Orl,_zrl,Aorl,Azrl,...,)_xrN,)_OrN,£zrN,AOrN,AzrN] r (88)

Classical Model

The discrete displacement vector for the shell is the (6MN + 2M + 2N + 2) x 1

vector

^T ^T
= .., UM] (89)Ushell [U O,u 1 :" ^T T

in which subvectors are

uo = [qo, Wl00, Vl01, Wl01, "", Vl0N, Wl0N] T (90)

'_m ---- [_tlm 0_wlm0_ulml_u2ml,vlml_v2ml_wlml_w2ml_..._ulmN_/t2mN_

VlmN_ V2mN_ WlrnN_ W2mN ] T

(91)

where m = 1, ..., M

The (4M + 1) x 1 discrete displacement vector for the stringer and (4N + 1) x 1

vector for the ring are

^ [Ustr = ql, ttsll, Us21, Wsll, Ws21, ..., UslM, Us2M: WslM, Ws2M (92)
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(93)

The 4M × 1 discrete interacting loads vector for the shell-stringer interface and (5N+

1) × 1 vector for the shell-ring interface are the same as for the shear deformation

model and are given by Eqs. (87) and (88).

The approximations in Eqs. (51) through (64) for the displacements and Eqs.

(65) through (71) for the interacting loads are substituted into the virtual work

functionals for each structural element, and also substituted into the variational

form of displacement continuity constraints. Then integration over the space is

performed. (The test space of virtual displacements and the virtual interacting loads

is the same space used for the approximations in Eqs. (51-71).) This process results

in a 10MN+ 13M + 14N +6 system of equations for the transverse shear deformation

model and 6MN + 10M + llN + 6 system of equations for the classical model,

governing the displacements and the interacting loads. The governing equations

are of the form

Kll 0 0 B11 B12 B13

0 K22 0 B21 0 B2a

0 0 K33 0 B32 0

o o o o
B5 o o o o
B5 o o o o

^

Ushell
^

?2 str
^

Uring

_str

Z_ring

, 62

'Fll '

0

0
'=' 0 (94)

0

0 ,

in which sub-matrices Kll, 1(22 and 1(33 are the stiffness matrices for the shell,

stringer, and ring, respectively. The sub-matrices Bij, i,j = 1,2, 3, in Eq. (94) are

determined from the external virtual work terms involving the interacting loads, and

the constraint Eqs. (48) to (50). The vector on the right-hand-side of Eq. (94) is the

force vector, determined from the external virtual work terms involving pressure.

The constraint equations correspond to the last three rows of the partitioned matrix

in Eq. (94). Equation (94) is first solved for the displacements in terms of interacting

loads, then this solution is substituted into the constraint equations to determine

the interacting loads. Thus, the total solution is obtained.
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NUMERICAL EXAMPLE

Data for the numerical exampleare representativeof a large transport fuselage

structure. The shell radius R = 122.0 in., frame spacing 2l = 22 in., and stringer

spacing 2R® = 15.0 in. The shell wall is a 13-ply [+45, 90, 0, +60, 90, +60, 0, 90, +45]T

laminate of graphite:epoxy AS4/938 tow prepreg with total thickness of 0.0962 in.

The ply thickness is 0.0074 in., and the lamina material properties are assumed

to be E1 = 19.21 x 106Ib/in. 2, E2 = 1.36 x 1061b/in. 2, G12 = G13 = G23 =

0.72 x 106lb/in. 2, and u12 = 0.32. For the transverse shear deformation model, the

shell wall stiffness sub-matrices of Eq. (23) are computed using these ply data and

the expressions for the stiffness elements given in the Appendix. The numerical

results are

D

A

0.5774

= 0.2619

0

0.2619 0

0.9766 0

0 0.2889

x 10 6 Ib/in.

B

3.893 0 0.1847 0.1847

0 -5.043 -0.2213 0.2213

0 -0.443 -1.1351 1.1351

lb

"474.937 256.071 45.074 0

256.071 615.194 54.003 -0.47 x 10 -5

45.074 54.003 276.965 -0.75 x 10 -5

0 -0.47 × 10 -_ -0.75 x 10 -5 0.75 x 10 -5

and elements of the transverse shear stiffness matrix in Eq. (24) are

lb in.

A44 = A55 = 0.69264 x 105 lb/in., A45 = 0

The bending and stretching-bending coupling sub-matrices for classical lamination

theory, Eq. (38), are given by

474.937

D = 256.071

0

256.071 0

615.194 0

0 276.965

Ib in. B = 0

The extensional stiffness sub-matrix A is the same for classical theory and the

transverse shear deformation theory.
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Crosssections of the stiffenersand their dimensionsare shown in Fig. 4. The

stringer is an inverted hat sectionlaminated from twelveplies of AS4/938 graphite-

epoxy tow prepregwith a [+45, 02,90,-t-15,90,02,+45] T lay up and total thickness

of 0.0888 in. The stiffnesses in Hooke's law for the stringer in Eq. (30) are

(EA)_ = 0.6675 x 1071b, (EI)_ = 0.2141 x 1071b in. 2, (GA)8 = 0.843 x 1061b

We assume a 2-D braided frame consisting of 0 ° and 90 ° tows. The wall thickness

is 0.141 inches, and the elastic modulii are assumed to be E1 = 7.76 x 106lb/in. 2,

E2 = 8.02 x 106lb/in. 2, G12 = G13 = G23 = 1.99 x 106Ib/in. 2, and v12 = 0.187.

Using the ring material properties and the cross-sectional dimensions, the stiffness

matrix for the ring in Eq. (33) is computed. The non-zero stiffnesses are

EA = 0.9088 × 1071b, EIxx = 3.915 × 107/b in. 2, EIzz = 0.1867 × 1071b in. 2

EIzz = 0.2993 x 1071b in. 2, EI._x = -1.322 x 107lb in. a, GJ = 0.1346 x 105/b in. 2

EI, o,o = 1.705 x 1071b in. 4, EI, o_ = -0.1865 x 1061b in. 3

GA_o = GA_o = 0.2396x107 Ib

All the results presented are for an internal pressure p = 10 psi, and the Fourier

series are truncated at twenty-four terms in the x- and 0-directions (M = N = 24).

RESULTS AND DISCUSSION

Interacting Load Distributions

The distributions of the interacting load intensities between the stiffeners and

the shell are shown in Figs. 5 through 11. The effects of transverse shear deforma-

tions and of warping of the ring's cross section due to torsion on the magnitudes of

the interacting line loads are summarized in Table 1. For the component Ax8 tan-

gent to the stringer (Fig. 5), there are only small differences in the distributions as

predicted by the four structural models. However, the peak value of the component
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normal to the stringer, _zs, is reduced in the transversesheardeformation models

with respect to its peak value in the classicalmodels (Fig. 6 and Table 1).

The distributions of axial force intensity, )_xr, between the ring and shell pre-

dicted by the classical and shear deformation models with warping are nearly the

same (Fig. 7). However, the distributions of this force intensity predicted by the

classical and shear deformation models without warping have significant differences.

Thus, this interacting load intensity is more sensitive to the inclusion or exclusion

of warping of the ring cross section into the structural model. As shown in Fig.

8, the differences in the results for circumferential force intensity, )_0r, between the

ring and shell from the four models are small, except in the vicinity of the stiffener

intersection where the effects of including the transverse shear deformation into the

models are manifested. However, the differences in )_0_ occur over one wave length

of the highest frequency i.e., /k0/O = 2/24. Differences occuring over the shortest

wavelength may not be significant; more terms in the Fourier series are required to

verify this. The distributions of the normal force intensity, _z_, between the ring

and shell predicted by the four models are essentially the same (Fig. 9). The distri-

butions of the circumferential moment component, Ao_, predicted by the classical

models have higher magnitudes as compared to shear deformation models (Fig. 10

and Table 1). Also note the change in sign of Ao_ distributions in the vicinity of

the joint as a result of inclusion of warping into the models. The classical theory

predicts much larger magnitudes of normal moment component, Az_, compared to

the transverse shear deformation theory for the models in which warping is included

(Fig. 11 and Table 1). However, the reverse is true for the structural models with

no warping. Also, there is a change in sign in the distributions of A,r for classical

models with and without warping effects.

The distribution of the normal component of the traction across the width of

the attachment flange of the ring is represented by line force intensity ,kz_ and

line moment intensity Ao_. The values of A.._ are nearly the same in the classi-

cal and transverse shear deformation models (Fig. 9), but magnitudes of Ao,- are
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substantially decreased in the transverse shear deformation models with respect to

the classical models (Fig. 10). Thus, the asymmetry of the normal traction across

the flange width of the ring is decreased in the transverse shear deformation models

with respect to the classical models.

The distribution of the circumferential component of the traction across the

width of the attachment flange of the ring is represented by line force intensity her

and line moment intensity Azr. The values of her are nearly the same in the classical

and transverse shear deformation models (Fig. 8). However, the magnitude of A.._

is substantially increased in the transverse shear deformation model with respect

to the classical model with warping excluded, and is substantially decreased in the

transverse shear deformation model with respect to the classical model with warping

included (Fig. 11). Thus, the asymmetry of the circumferential traction across the

flange width of the ring is increased in the transverse shear deformation model with

respect to the classical model without warping, and is decreased in the transverse

shear deformation model with respect to the classical model with warping.

For the stiffened shell configuration with asymmetrical cross section ring, the

inclusion of transverse shear deformation and warping of ring cross section into

the analyses influences the distributions and magnitudes of interacting line load

components kzs, _x_, )_e_, Aer, and Az_. The distributions of interacting line load

components )_** and Az_ remain essentially the same. The cause of sensitivity to

transverse shear deformations is two-fold: First, the tangential displacements of the

shell along the contact lines are de-coupled from the out-of-plane rotations of the

reference surface of the shell, and for the stiffeners the longitudinal displacements

along the contact lines are de-coupled from the rotations of the longitudinal reference

axes. Second, in the transverse shear deformation model, the torsional rotation

of the ring at the shell-stringer-ring joint is de-coupled from the in-plane bending

rotation of the stringer at the joint, thereby allowing for increased joint flexibility.

In the classical model, the torsional rotation of the ring at the joint is constrained

to be the same as the bending rotation of the stringer (see Fig. 12). The values
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of these joint rotations for the four structural models are given in Table 2. Notice

from Table 2 that the sense of the rotation changes if warping is included, and that

the transverse shear deformation results in a torsional rotation of the ring that is

about twice as much as the bending rotation of the stringer.

Resultants at the-Stiffener Intersection

The interacting line load intensities acting on the inside of the shell wall can

be resolved into a resultant at the stiffener intersection (x = 0 = 0). In general

this resultant consists of a force with components Fx, Fo and F_, and a couple with

moment components Cx, Co and Cz. These components are shown in their positive

sense on the inside of the shell wall in Fig. 13. The components of the resultant

force vector are defined by

l ®

/ / 'Fx = _ dx + _ (R- 5) dO
-I -0

(95)

e

Fo = f [_or CosO
-6)

t

+ £z_ SinO] (R- 5) dO

FZ

l 6)

/ /)%s dx + [_ CosO- _o_ SinO] (R- -5) dO,
-I -6)

and the components of the moment resultant of the couple are

(96)

(97)

CX

G

t) 2 dO= [_z_SinO - (1 - CosO))_o_] (R - _

-0

(98)

Co = - / x,_zsdx

-l

6)

t

+ f [- _(_ - Co_O)(R- -5)
-6)

6)

Cz = [- Axe(R- )SinO- AorSinO + Azr CosO] (R- 5) dO

-0

+ Ao Co O+ A  Sg O](R- )60
z

(99)

(_oo)
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It is found that substituting for interacting load approximations given by Eqs. (65-

71) into Eqs. (95-100), and performing the line integrals results in components

F_ = Fo = Cx = Cz = 0. Thus, at the stiffener intersection, the only non-zero

resultants are a radial force resultant, Fz, and a circumferential moment resultant

Ce (refer Fig. 13). Ir_ Eq. (99) the circumferential moment component, Ce, consists

of two line integrals; first integral being the contribution of shell-stringer interacting

loads, and second representing the contributions of shell-ring interacting loads. The

contribution to the radial force resultant Fz in Eq. (97) comes only from the shell-

ring interacting load intensitites since the resultant from the stringer vanishes by

Eq. (73).

The values of the radial force and circumferential moment resultants are com-

puted using Eqs. (97) and (99) for the four structural models under consideration,

and are given in Table 3. The differences predicted by the four structural models in

the magnitudes of the radial force resultant Fz are very small, and are within 0.4%

of each other. There are substantial differences in the magnitudes of circumferential

component of the moment predicted by the four models. The values of Co predicted

by the models with warping included are much larger than those predicted by the

models without warping effects. The individual contributions of the stringer and

ring to Co are also affected by the change in the model as shown in Table 3. It may

be noted that Co is more sensitive to the effect of warping than to transverse shear

deformation.

Singular Behavior at the Joint

In Table 1 the comparison of peak values of the interacting line load intensities is

meant to convey the influences of transverse shear deformations and warping in the

structural modeling. The peak values of components Azs, )_xr, ,_zr, and Ao_ occur

at the joint, but these peak values do not exhibit convergence with an increasing

number of terms retained in the Fourier series. It appears that these components

are singular at the joint. However, the resultants Fz and Co determined from these
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line load intensities werefound to convergequite rapidly. SeeJohnsonand Rastogi

(1994) for further discussionof this point.

Stiffener Actions

The distributions of the force and moment resultants in the stiffeners are shown

in Figs. 14 through 19. The stringer axial force and bending moment distributions

(Fig. 14) are slightly asymmetric about the origin. The bending moment distribu-

tions in the stringer are more sensitive to the change in models as compared to the

axial force distributions. The distribution of stringer shear force, Vzs, is shown in

Fig. 15, and it is asymmetric about the origin. Only small differences are predicted

by the four structural models in the distribution of Vz_.

The distributions of the circumferential force and in-plane bending moment in

the ring are shown in Fig. 16. The differences in these distributions predicted by

the four models are very small. The distributions in-plane shear force, Vz_, in the

ring predicted by the four structural models have negligible differences, as shown

in Fig. 17. The out-of-plane bending moment Mz_ and torque T_ in the ring are

more sensitive to the change in models as shown Fig. 18. The distributions of the

out-of-plane bending moment are symmetric about the origin, and their magnitudes

predicted by the models with warping included are substantially larger as compared

to the magnitudes predicted by the models without warping. The distributions of

total torque, T_ (= Tsr - M,o,_/Ro), are antisymmetric about the origin. As shown

in Fig. 18, the torque has reduced magnitudes in the transverse shear deformation

model compared to the classical model when warping is included. The torque

predicted by the models without warping is St. Venant's torque T_, and this is

negligible as shown in Fig. 18. The distributions of out-of-plane shear force, V_, in

the ring are shown in Fig. 19, and these distributions are antisymmetric about the

origin. The magnitudes of V_ predicted by the transverse shear deformation model

are larger compared to the classical model when warping is included. However the

reverse is true for the l/_ distributions without warping. The distributions for
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Mos, Vz_,Mzr, Tr and V_r shown in Figs. 14, 15, 18 and 19, respectively, indicate

that these stiffener actions are sensitive to both transverse shear deformations and

warping deformations.

Shell Response

The distribution'of the normal displacement along z-curve midway between the

stringers (0 = -®), and along the 0-curve midway between the rings (x = -l),

are shown in Fig. 20. As depicted in this figure, there is a negligible difference be-

tween the results from the transverse shear deformation model and classical model

(warping of the ring is included in both models). Also, there is negligible differ-

ence in the axial and circumferential normal strain distributions between the two

models as shown in Figs. 21 and 22. Thus, the normal displacement and in-plane

normal strains for the shell are not significantly influenced by the inclusion of either

transverse shear deformations or warping deformation of the ring into the structural

models, in part because the shell is very thin for the example studied.

A Ring with Symmetric Cross Section

As a benchmark for comparing transverse shear deformation model with the

classical model, analyses were performed for a ring with symmetric cross section.

In this case the changes made to the numerical example under discussion are to set

the bending-coupling stiffeness EIzx, the out-of-plane bending to warping coupling

stiffness EI_x, and the contour warping function parameter w0 of the ring, all to

zero. Consequently, the 0-axis, as well as the z-axis, are axes of symmetry for

the repeating unit in terms of geometry, load, and material properties. Symmetry

about the 0-axis implies there is no out-of-plane bending and torsion of the ring; i.e.,

u,.(O) = ¢0_(0) = ¢_(0) = Axr(0) = Ao,.(O) = Az,-(O) = 0 for -® _< 0 _< ®. Thus,

for the symmetrical section stiffeners only the interacting line load components

tangent and normal to the stiffeners are non-zero. Since the internal pressure loading

is symmetric, warping of the ring cross section does not play any role in the analyses.
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The distributions of the tangential interacting load intensity between the shell

and ring are shown in Fig. 23. The differences in the results from the two models are

small except in the vicinity of the stiffener intersection. The peak magnitude of A0,_

in the transverse shear deformation model is smaller than the peak value for A0,- in

the classical model (50.8 lb/in versus 64.5 lb/in.). However, this difference occurs

over one wave length of the highest harmonic retained in the analysis, and may

not be significant. The distributions of the tangential and normal interacting load

intensities between the shell and stringer, and the normal load intensity between

the shell and ring are not significantly different in the two models.

For a symmetrical cross section ring, in Eqs. (95) through (100) Fx = Fo =

Cx = Co = Cz = 0. The only non-zero component of the force resultant is the

radial force F,. The values of Fz computed from the classical and transverse shear

deformation models are -563.72 lb. and -561.89 lb., respectively.

CONCLUDING REMARKS

A unit cell model of an internally pressurized, long circular cylindrical shell

stiffened on the inside by a regular arrangement of identical stringers and identical

rings is analyzed. The ring is assumed to have an open asymmetrical cross section,

and the stringer is assumed to have a symmetric section. The asymmetrical section

ring significantly complicated the analysis of the unit cell, since symmetry about

the plane of the ring is lost. Out-of-plane bending and torsion of the ring occur

as well as a rotation of the shell-stringer-ring joint about the circumferential axis

of the ring. Mathematical formulations for the linear elastic response presented in

this work include the effects of transverse shear deformations and of out-of-plane

warping of the ring's asymmetrical cross section due to torsion. Closed-end pressure

vessel effects are included in the analyses. Data representative of a large transport

aircraft are used in the numerical example.

For the stiffened shell configuration with an asymmetrical cross section ring, the

inclusion of transverse shear deformation and warping of ring's cross section into
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the analyses influences the distributions and magnitudes of interacting line load

componentsbetweenthe shellwall and stiffeners(Table 1), and the stiffener actions

(see Figs. 14 and 18). However, the normal displacement and in-plane normal

strains for the shell arenot significantly different in the four structural models. The

causeof sensitivity t,o transverseshear deformations can be attributed to the de-

coupling of the torsional rotation of the ring at the shell-stringer-ring joint from the

in-plane bending rotation of the stringer at the joint, thereby allowing for increased

joint flexibility. In the classical model, the torsional rotation of the ring at the joint

is constrained to be the same as the bending rotation of the stringer (see Fig. 12

and Table 2). The inclusion of warping of the ring's cross section due to torsion into

the analyses causes the magnitude of the circumferential component of the moment

resultant of the interacting line loads, Co, to increase substantially (see Table 3).
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Appendix

ELEMENTS OF STIFFNESS MATRIX FOR A CYLINDRICAL SHELL

BASED ON TRANSVERSE SHEAR DEFORMATION THEORY

Based on the transverse shear deformation theory, the e!ements Aij,Bii, and

Dij of the stiffness matrices, in Eqs. (23) and (24) for the constitutive law for a

laminated shell wall, axe given by

All
=_t(011(I+R) dz

Ax2 = ft _)12dz

A16 =jft 1016dz

f Q z -1A22= 22(1+ _) d2

j( Z --1A26 = Q26(1+_) dz

J_t Z --1A66= Q66(1+_) dz

B_ =f_)_z(_ +R)dZ

B12 =j( lO12zdz

B_6 = ftQa6z(1 + R )dz

B126 ----ft Q16 22_--_dz

/,B22 = I022z(1 + dz

f z 1 z -1B_ = O_6z(l +_)( +-f) dz

_t z2 z -1Bio= _2_(_+-_) d2

B61 =j( lO16zdz

B62 = Q16z(1 + dz
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; __)-'= 066z(1 + __-_)(1 + dz

J ~_R z -1= 0o_ (1+_) d:

f= QI,:_(I+ _)d:

=f01 z d:

=JO1622(1 + R)dZ

=f, 0, 236g_dz

fO Z --1= 22z2(1+ _) dz

/Q z= 26z2(1 + _)(1 +

B_6

Dll

D]2

D_

DI_

D22

D16 dz

f, _3 R)_,D_6 = 026_-_(1+ dz

SQD_ = 66z2(1 + _._) (1 + dz

•_t - Z3 Z Z --1D_ = Q66_-_(1+ _-_)(1 + _) dz

J_t - Z4 Z --ID_= Q66-4_(1+-_) dz

where Qij are the transformed reduced stiffnesses given in the text by Jones (1975).

Based on the assumption of constant transverse shear strain distribution through

the thickness, the transverse shear stiffnesses are given by

A44 =JC44( 1 +R )dz

A45 = ft C4_dz

J_t Z --1Ass= C55(1+_) dz

where

C44 = GlaCos2 a + G2aSin2 a
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C45 =(Gx3 - G23)CosaSinol

C55 =G23Cos2 0_ + G13Sin2 e_

in which c_ is the ply orientation angle.

Based on the assumption of constant transverse shear stress distribution through

the thickness, the transverse shear stiffnesses are given by

k22 k12 kll

A44 = _ A45 =- k A55 =

in which k = kllk22 - k22 • The coefficients kij are given by

l jkll =_" C44(1 -Jr- dz

k12= fc45dz

f c55(l + R)dZ

where
Cos2o_ Sin2o_

+_
c44- G13 G23

1 1

C45 =( G13 G23 )Coso_Sinol

Sin2o_ Cos2c_

c55--G13 "t- G23
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Table h Effect of transverse shear and warping on the interacting load intensities and their

distributions along the contact lines a

Component

Peak values of the interacting load intensity

CLT b SDT d
CLT model SDT Model

model model

Warping c Warping Warping Warping
included included

neglected neglected

Comments on the

distribution, and

figure number

_'xs 131. @ 132. @ 127. @ 130. @ Antisymmetric;
lb/in, x//= - 0.22 x//= - 0.22 x//= - 0.21 x//= - 0.22 Non-zero over

entire stringer

length; Fig. 5

_,zs 767. @ 613. @ 571. @ 571. @ Symmetric; Small

lb/in, x//= - 0.02 x//= 0.01 x/1 = 0 x//= 0 magnitudes except

near origin; Fig. 6

_'xr 90.8 @ 74.6 @ 10.7 @ 80.7 @ Symmetric; Small

lb/in. 0/19 = 0 0/O = 0 0/19 = 0 0/O = 0 magnitudes except

near origin; Fig. 7

_0r 63.2 @ 55.2 @ 49.0 @ 44.8 @ Antisymmetric;
lb/in. 0/19 = _+0.04 0/O = _+0.04 0/O =_+0.21 0/19 = _+0.29 Non-zero over

entire ring length;

Fig. 8

_'zr - 886. @ - 883. @ - 854. @ - 852. @ Symmetric; Small

lb/in. 0/19 = 0 0/19 = 0 0/O = 0 0/19 = 0 values except near

origin; Fig. 9

A0r - 198. @ 73.1 @ - 30.2 @ 22.1 @ Symmetric; Nearly

in.-lb/in. 0/19 = 0 0/19 = 0 0/19 = 0 0/19 = 0 zero except near

origin; Fig. 10

Azr 3.21 @ -4.38 @ -3.95 @ - 1.55 @ Antisymmetric;
in.-lb/in. 0/19 = +0.03 0/19 = +0.37 0/O = _+0.37 0/19 = _+0.20 Non-zero over

entire stringer

length; Fig. 11

a. Results for Fourier series truncated at 24 terms in the axial and circumferential directions.

b. CLT is classical lamination theory.
c. Out of plane warping of the ring's cross section due to torsion
d. First order transverse shear deformation theory



Table 2: Rotations about the circumferential axis at the stiffener intersection.

Description of the rotation

of the structural component

Rotations in 10 -5 radians

Classical theory Transverse shear theory

No Warping Warping No Warping Warping

Shell normal _x (0, 0) - 2.56

Ring twist _)0r (0) - 2.56

Stringer normal O0s (0) - 2.56

2.58 -1.06 2.65

2.58 -2.67 3.64

2.58 -0.29 1.85

Table 3: Resultants at stiffener intersection.

Transverse shear

Components of Classical theory deformation theory
the resultant

Warping No warping Warping No warping

C o from - 0.0921 - 1.1696 - 0.7797 - 0.2953

stringer, lb-in.

C Ofrom ring, 5.645 1.627 6.0192 1.363
lb-in.

C o total, lb-in. 5.5526 0.457 5.2396 1.0676

F z, lb. - 564.56 - 564.06 - 563.15 - 562.27



Z

P

0

1

Fig. 1. Repeating unit of an orthogonally stiffened cylindrical shell.
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Fig. 2. Interacting line load intensities shown in the positive

sense acting on the inside surface of the shell.
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